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LETTER TO THE EDITOR

Boundary K-supermatrices for the one-dimensional
small-polaron open chain

Huan-Qiang Zhou†
CCAST (World Laboratory), PO Box 8730, Beijing 100080, People’s Republic of China, and
Department of Physics, Chongqing University Chongqing, Sichuan 630044, People’s Republic
of China‡

Received 21 February 1996

Abstract. The Lax pair for the one-dimensional small-polaron open chain is explicitly
constructed. From this the general boundaryK-supermatrices are found. Our construction
provides a direct demonstration for the integrability of the system.

In the last decade, much attention has been paid to the study of completely integrable
lattice spin open chains [1–8]. As was shown by Sklynanin [1], there is a variant of
the usual formalism of the quantum inverse scattering method (QISM) [9–11], which may
be used to describe systems on a finite interval with independent boundary conditions on
each end. Central to his approach is the introduction of an algebraic structure called the
reflection equations (RE) [12]. Although Sklyanin’s argument was carried out only for the
P and T invariantR-matrices, it is now known that the formalism may be extended to
apply to any systems integrable by the quantumR-matrix approach [8]. Much attention
has been paid to the solutions of RE which present the boundaryK-matrices compatible
with the integrability. Recently, the boundaryK-matrices have been constructed by several
groups [6] for the Heisenberg spin-1

2 open chain and by the present author [7, 8] for the
one-dimensional (1D) Hubbard open chain and for the 1D Bariev open chain.

On the other hand, the traditional basis for applying QSIM to a completely integrable
system is to represent the equations of motion of the system into Lax form. Following
Korepin et al [9, 10], one may show that, for systems with periodic boundary conditions,
the existence of the quantumR-matrix allows one to express the original equations of
motion in Lax form. In particular, the Lax pairs for a variety of physically interesting
models were given in [13–16]. Thus, one may expect that there is a variant of the usual
Lax pair formulation to describe quantum integrable lattice open chains. Recently, we have
shown that such a formulation does exist [17].

The aim of this letter is to present the Lax pair for the 1D small-polaron open chain
in explicit form. From this the general boundaryK-supermatrices are determined. Our
construction provides a direct description for the quantum integrability of the system.

† E-mail address: cul@cbistic.sti.ac.cn
‡ Mailing address.
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Let us first recall the Lax pair formulation for completely integrable lattice fermion
open chains described in [17]. Instead of directly considering the equations of motion, let
us study an operator version of an auxiliary linear problem:

ψj+1 = Lj(λ)ψj j = 1, 2, . . . , N

d

dt
ψj = Mj(λ)ψj j = 2, . . . , N

d

dt
ψN+1 = δN(λ)ψN+1

d

dt
ψ1 = δ′

1(λ)ψ1.

(1)

HereLj , Mj , δ andδ′ are some supermatrices depending on the spectral parameterλ and the
dynamical variables. The consistency conditions for equation (1) yield the Lax equations

d

dt
Lj (λ) = Mj+1(λ)Lj (λ)− Lj(λ)Mj(λ) j = 2, . . . , N − 1

d

dt
LN(λ) = δN(λ)LN(λ)− LN(λ)MN(λ)

d

dt
L1(λ) = M2(λ)L1(λ)− L1(λ)δ

′
1(λ).

(2)

A lattice fermion open chain is said to be completely integrable if we can express the
equations of motion in the Lax form (2), provided the boundaryK-supermatrices exist as
the solutions of equations (4) and (5) below. In fact, it is readily shown that a transfer
matrix

τ(λ) = str(K+(λ)LN(λ) . . . L1(λ)K−(λ)L−1
1 (−λ) . . . L−1

N (−λ) (3)

does not depend on timet , provided the constrains hold:

K−(λ)δ′
1(−λ) = δ′

1(λ)K−(λ) (4)

and

str[K+(λ)δN(λ)AN(λ)] = str[K+(λ)AN(λ)δN(−λ)] (5)

with

AN(λ) = LN(λ) . . . L1(λ)K−(λ)L−1
1 (−λ) . . . L−1

N (−λ). (6)

Here the supertrace ‘str’ is taken over the auxiliary superspace. This implies that the system
under study possesses an infinite number of conserved quantities.

Now, let us study the 1D small-polaron open chain with Hamiltonian

H = −
N∑
j=2

[(a†
j aj−1 + a

†
j−1aj )+ 1

2 cos(2η)(2nj − 1)(2nj−1 − 1)] + sin(2η) cotξ+nN

+α+a
†
N + β+aN + sin(2η) cotξ−n1 + α−a

†
1 + β−a1. (7)

Herea†
j andaj are, respectively, the creation and annihilation operators at lattice sitej , and

satisfy the usual anti-commutation relations

{aj , ak} = {a†
j , a

†
k} = 0 {aj , a†

k} = δjk

and nj is the density operator,nj = a
†
j aj . Furthermore,η is a coupling parameter and

ξ±, α± and β± are some members of Grassmann algebra withξ± even andα±, β± odd,
satisfyingα±β± = 0.



Letter to the Editor L609

It is not difficult to check that the equations of motion derived from the Hamiltonian (7)
may be cast into the Lax form (2). Indeed, in our case, theL andM matrices take the form
[16]

Lj(λ) =
(
(i sin(λ+ 2η)− sinλ)nj + sinλ sin 2ηaj

−i sin 2ηa†
j (−i sinλ− sin(λ+ 2η))nj + sin(λ+ 2η)

)
(8)

and

Mj(λ)

=
(
a+a

†
j aj−1 − a−aja

†
j−1 + a0aja

†
j aj−1a

†
j−1 b0(njaj−1 + iajnj−1)+ ib−aj + b+aj−1

b0(nja
†
j−1 − ia†

j nj−1)− ib+a
†
j + b−a

†
j−1 a−a

†
j aj−1 − a+aja

†
j−1 + a0njnj−1

)
(9)

with

a+ = −
(

i − sinλ

sin(λ+ 2η)

)
a− = −

(
i + sinλ

sin(λ− 2η)

)
b+ = sin 2η

sin(λ− 2η)
b− = sin 2η

sin(λ+ 2η)

a0 = i sin 4η sin 2η

sin(λ+ 2η) sin(λ− 2η)
b0 = − sinλ sin 4η

sin(λ+ 2η) sin(λ− 2η)
.

Here we emphasize that theL andM matrices are supermatrices with paritiesP(1) = 0,
P(2) = 1. From equation (2), it follows that

δ′
1(λ) =

(
δ′

11 δ′
12

δ′
21 δ′

22

)
(10)

with

δ′
11 = 1

1

[
i sin2 2η

sinξ−
sin(2η + ξ−)(1 − n1)+ sin(λ− 2η)(i sin(λ+ 2η)− sinλ)α−a

†
1

+ sin(λ+ 2η)(i sin(λ− 2η)+ sinλ)β−a1

]
δ′

12 = 1

1

[
i sin2 2η

sinξ−
sin(λ− ξ−)a1 − sin 2η(sin(λ+ 2η)+ sin(λ− 2η))n1α−

+ sin 2η sin(λ+ 2η)α−

]
δ′

21 = 1

1

[
− i sin2 2η

sinξ−
sin(λ+ ξ−)a

†
1 + sin 2η(sin(λ+ 2η)+ sin(λ− 2η))n1β−

− sin 2η sin(λ− 2η)β−

]
δ′

22 = 1

1

[
− i sin2 2η

sinξ−
sin(2η − ξ−)n1 + sin(λ+ 2η)(i sin(λ− 2η)+ sinλ)α−a

†
1

+ sin(λ− 2η)(i sin(λ+ 2η)− sinλ)β−a1

]
and

δN(λ) =
(
δ11 δ12

δ21 δ22

)
(11)
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with

δ11 = 1

1

[
i sin2 2η

sinξ+
sin(2η + ξ+)(1 − nN)+ sin(λ+ 2η)(i sin(λ− 2η)+ sinλ)α+a

†
N

+ sin(λ− 2η)(i sin(λ+ 2η)− sinλ)β+aN

]
δ12 = 1

1

[
sin2 2η

sinξ−
sin(λ+ ξ+)aN − i sin 2η(sin(λ+ 2η)+ sin(λ− 2η))nNα+

+i sin 2η sin(λ− 2η)α+

]
δ21 = 1

1

[
sin2 2η

sinξ+
sin(λ− ξ+)a

†
N − i sin 2η(sin(λ+ 2η)+ sin(λ− 2η))nNβ+

+i sin 2η sin(λ+ 2η)β+

]
δ22 = 1

1

[
− i sin2 2η

sinξ+
sin(2η − ξ+)nN + sin(λ− 2η)(i sin(λ+ 2η)− sinλ)α+a

†
N

+ sin(λ+ 2η)(i sin(λ− 2η)+ sinλ)β+aN

]
where1 = sin(λ+ 2η) sinλ− 2η.

We now proceed to study the constraint conditions (4) and (5). Let us assume the
boundaryK-supermatrixK−(λ) to take the form

K−(λ) =
(
K11 K12

K21 K22

)
(12)

and, substituting into equation (4), one may check that, out of the 16 homogeneous linear
equations aboutK11, K12, K21 andK22, only three are independent. After some algebraic
calculations, we find

K−(λ) = − 1

sinξ−

 sin(λ− ξ−)
α− sinξ− sin 2λ

i sin 2η
β− sinξ− sin 2λ

i sin 2η
− sin(λ+ ξ−)

 (13)

(up to an unimportant scalar factor). In order to determine the boundary supermatrixK+(λ),
let us first note that

AN(λ) = LN(λ)AN−1(λ)L
−1
N (−λ). (14)

Obviously, the matrix elements ofAN−1 (anti)-commute with those ofLN . Keeping this
fact in mind, and noting that the matrix elements ofAN−1 are independent, we immediately
obtain

K+(λ) =

 sin(λ+ 2η − ξ+) −α+ sinξ+ sin 2(λ+ 2η)

i sin 2η

−β+ sinξ+ sin 2(λ+ 2η)

i sin 2η
sin(λ+ 2η + ξ+)

 (15)

(up to an unimportant scalar factor).
Now let us show that the Hamiltonian (7) may be related with the transfer matrix (3).

Indeed, expanding the transfer matrix (3) in powers ofλ, we have

τ(λ) = τ(0)[1 − sin 2η(H + constant)λ+ · · ·]. (16)
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Thus, we have shown that the model under consideration admits the Lax pair formulation.
In conclusion, we have presented the Lax pair for the 1D small-polaron open chain. The

boundaryK-supermatrices thus constructed should be the solutions of the graded version of
the reflection equations. Thus our construction provides a basis for establishing the graded
version of Sklyanin’s formalism to describe integrable systems with boson and fermion
fields in the finite interval. Here we emphasize that in contrast with the periodic case
[16, 18], the Hamiltonian (7) may not be mapped into the 1D Heisenberg XXZ open chain
via the Jordan–Wigner transformation. This implies that the system under consideration is
essentially new. The extension of our construction to other open fermion chains, such as
the 1D Hubbard open chain [7] and the 1D Bariev open chain [8], is also interesting. We
hope to return to these questions in the near future.

This work was supported in part by the National Natural Science Foundation of China
under grant No 19505009. I am grateful to Professor Xing-Chang Song and Professor
Chong-Sheng Li for their support and encouragement.
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